成考热线:
400-869-6989

所在位置: 福建成考网 > 成考答疑 >

2020年福建成考专升本的高数二考试范围是什么?

2020-05-20 14:17

问:2020年福建成考专升本的高数二考试范围是什么?

答:本科目考试要求考生掌握必要的基本概念、基本理论、较熟练的运算能力。主要考查学生识记、理解和应用能力,为进一步学习奠定基础。具体内容与要求如下:

一、函数、极限与连续

(一)函数

1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。

2.了解函数的有界性、单调性、周期性和奇偶性。

3.了解分段函数和反函数的概念,理解复合函数的概念。

4.掌握函数的四则运算与复合运算。

5.掌握基本初等函数的性质及其图形,了解初等函数的概念。

6.了解经济学中的几种常见函数(成本函数、收益函数、利润函数、需求函数和供给函数)。

(二)极限

1.了解数列极限和函数极限(包括左极限与右极限)的概念。

2.了解极限的性质与极限存在的两个准则(夹逼准则与单调有界准则),掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法。

3.理解无穷小量的概念和基本性质,掌握无穷小量的比较方法。了解无穷大量的概念及其与无穷小量的关系,会运用等价无穷小量替换求极限。

(三)连续

1.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

2.掌握连续函数的性质。

3.掌握闭区间上连续函数的性质(有界性定理、最大值和最小值定理、介值定理)。

4.理解初等函数在其定义区间上连续,并会利用连续性求极限。
 

二、一元函数微分学

(一)导数与微分

1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义,会求平面曲线的切线方程和法线方程。

2.熟练掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。

3.掌握隐函数的求导法、对数求导法。

4.了解高阶导数的概念,会求简单函数的阶导数。

5.了解函数微分的概念,了解微分与导数的关系,会求函数的一阶微分。

(二)中值定理及导数的应用

1.理解罗尔中值定理、拉格朗日中值定理,了解柯西中值定理和泰勒定理。会用罗尔定理证明方程根的存在性,会用拉格朗日中值定理证明简单的不等式。

2.熟练掌握洛必达法则,会用洛必达法则求“”,“”型未定式的极限。

3.掌握函数单调性的判别方法,理解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用。

4.会用导数判断函数图形的凹凸性,会求函数图形的拐点、水平渐近线和垂直渐近线。

5.了解边际函数、弹性函数的概念及其实际意义,会求简单的应用问题。
 

三、一元函数积分学

(一)不定积分

1.理解原函数与不定积分的概念,了解原函数存在定理,掌握不定积分的性质。

2.熟练掌握不定积分的基本公式。

3.掌握不定积分的第一、第二换元法和分部积分法。

(二)定积分

1.理解定积分的概念与几何意义,了解可积的条件。

2.掌握定积分的基本性质。

3.理解积分上限函数,会求它的导数,掌握牛顿-莱布尼茨公式。

4.掌握定积分的换元积分法与分部积分法。

5.会利用定积分计算平面图形的面积,会利用定积分求解简单的应用问题。
 

四、多元函数微积分

(一)多元函数微分学

1.了解二元函数的概念、几何意义及二元函数的极限与连续概念。

2.了解偏导数、全微分概念,会求二元函数的一、二阶偏导数。

3.掌握复合函数一阶偏导数的求法。

4.会求二元函数的全微分。

5.掌握由方程所确定的隐函数的一阶偏导数的计算方法。

6.会求二元函数的无条件极值。

(二)二重积分

1.理解二重积分的概念、性质及其几何意义。

2.掌握二重积分在直角坐标系下的计算方法。
 

五、常微分方程

(一)了解常微分方程的定义,了解常微分方程的阶、解、通解、初始条件和特解。

(二)掌握可分离变量微分方程和一阶线性微分方程的解法。

(三)会用常微分方程求解简单的应用问题。
 

以上就是福建成考网小编关于“2020年福建成考专升本的高数二考试范围是什么?”的所有回答,希望能帮到大家。如有其他疑问,请微信扫描以下二维码,添加老师微信,进行在线咨询。

版权保护: 本文由 福建成考网提供,转载请保留链接: 2020年福建成考专升本的高数二考试范围是什么?

  • 福建成考网便捷服务
  • 福建成考考生QQ交流群

    QQ交流群交流群

    点击加入QQ交流群

    与考生自由互动、并且能直接与资深老师进行交流、解答。